Face Hallucination via Gradient Constrained Sparse Representation
نویسندگان
چکیده
منابع مشابه
Face Hallucination Using Sparse Representation Algorithm
Face Hallucination is a super-resolution technique to obtain high-resolution facial images by taking low-resolution facial images as input. In this paper problem of face hallucination has been approached by using sparse Representation. The image has to be subdivided into different segments so that image pixel information can be retrieved easily from each segment. Each small patch of the image h...
متن کاملRobust Face Recognition via Sparse Representation
In this project, we implement a robust face recognition system via sparse representation and convex optimization. We treat each test sample as sparse linear combination of training samples, and get the sparse solution via L1-minimization. We also explore the group sparseness (L2-norm) as well as normal L1-norm regularization.We discuss the role of feature extraction and classification robustnes...
متن کاملTuning Sparsity for Face Hallucination Representation
Due to the under-sparsity or over-sparsity, the widely used regularization methods, such as ridge regression and sparse representation, lead to poor hallucination performance in the presence of noise. In addition, the regularized penalty function fails to consider the locality constraint within the observed image and training images, thus reducing the accuracy and stability of optimal solution....
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملCorrupted and occluded face recognition via cooperative sparse representation
In image classification, can sparse representation (SR) associate one test image with all training ones from the correct class, but not associate with any training ones from the incorrect classes? The backward sparse representation (bSR) which contains complementary information in an opposite direction can remedy the imperfect associations discovered by the general forward sparse representation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2795038